Development of F_1 and BC_1F_1 interspecific hybrids of *O. sativa* cv. Savitri / *O.brachyantha* to introgress yellow stem borer resistance genes into cultivated rice

B. Panda, M.K. Kar, G. Padhi and P. Sen*

Central Rice Research Institute, Cuttack - 753 006

ABSTRACT

In the present study an attempt has been made to introgress yellow stem borer resistance genes from O. brachyantha (FF) to cultivated rice through development of F_1 and BC_1F_1 interspecific hybrids of O. sativa cv Savitri / O.brachyantha. The morpho-cytological characterization of the hybrids was done in order to know the phenotypic characters of the interspecific hybrids and cytological behavior of the chromosomes. The data revealed that in general morphologically, the F_1 was intermediate between the donor and recipient parents. In F_1 interspecific hybrid no chromosome pairing was observed, where as in BC_1F_1 presence of 0-2 trivalents and bivalents was observed.

Key words : rice, genome, wild species, interspecific hybrids, yellow stem borer

Rice, the most important cereal crop in the world is cultivated under diverse agro-ecosystems. The production and productivity of rice are affected by several biotic and abiotic stresses. Yellow stem borer (YSB) Scirpophaga incertulas (Walker) is one of the major insect pests that damage the crop in most of the agro-ecosystems. YSB is the most destructive widely occurring pest causing an yield loss of about 1-19% and 38-80% in early and late planted rice crop, respectively (Catindig and Heong, 2003). Genetic variability for resistance to YSB is either limited or lacking in the primary gene pool of rice. Wild species of secondary gene pool of rice are important reservoirs of many useful genes including resistance to diseases and insect pests. Among the wild rice germplasm, O. officinalis, O. brachyantha, O. ridleyi and Porteresia coarctata were found to be resistant / tolerant to YSB (Padhi and Sen, 2002). For the introgression of the YSB resistance genes, wide hybridization between wild species and cultivated rice is required which is difficult due to genomic incompatibility and chromosome nonhomology that may cause pre-fertilization and postfertilization barriers for genetic exchange. Prefertilization barriers can be overcome by applying growth hormones (Sitch and Romero, 1990). Postfertilization barriers can be overcome by rescuing the embryo before abortion on a suitable nourishing medium under asceptic condition. Employing the embryo rescue technique, a number of wide cross hybrids in rice have been developed by several researchers (Jena and Khush, 1990; Sitch and Romero, 1990; Brar *et al.*, 1991; Panda 2006, Sen *et al.*, 2006). In the present study an attempt has been made to introgressYSB resistance genes from *O. brachyantha* to cultivated rice through development of F_1 and BC₁ F_1 interspecific hybrids of *O. sativa* cv Savitri / *O.brachyantha*.

MATERIALS AND METHODS

For the introgression of YSB resistance genes to cultivated rice *O. sativa* cv Savitri was used as female parent and *O.brachyantha* was used as the donor and the crosses were made treating the spikelets of Savitri with phyto-hormones before and after the pollination. The expected fertilized embryos were rescued in ¹/₄ MS media 10-12 days after pollination. The embryos were incubated in dark for germination and after

Interspecific hybrids

germination they were grown in the illuminating chamber and subsequently subcultured in rooting medium. At 3-4 leave stage the seedlings were removed from the test tubes and roots were washed thoroughly under running tap water. Then they were transferred to pots with sterilized soil and were kept for 3-4 days in the room temperature in the laboratory for acclimatization and finally shifted to net house where they were allowed to grow with a good agronomic condition till maturity. The F₁ interspecific hybrid of *O*. *sativa* cv Savitri / *O.brachyantha* was backcrossed with the recurrent parent *O. sativa* cv Savitri for the development of BC₁F₁ hybrid employing embryo rescue technique.

The morphological characters of the embryo rescued plants of F_1 and BC_1F_1 interspecific hybrids were studied and both qualitative and quantitative characters were recorded. The cytological behavior of both was studied fixing the young spikelets in aceto

Table 1. Crossability between O. sativa and O. brachyantha

alchol (1:3) and smearing the anthers at appropriate stages in 2% acetocarmine solution. The F_1 and BC_1F_1 interspecific hybrids were evaluated against YSB along with cv. Jaya (susceptible check) and cv. Ratna (tolerant check). The screening was made by implanting the freshly hatched YSB larvae @ 2 larvae per tiller into the plant in both wet and dry seasons in replicated trials. Scoring of the damage was done by following SES system developed by IRRI (1992).

RESULTS AND DISCUSSION

Out of 1302 spikelets of *O. sativa* cv. Savitri pollinated with *O. brachyantha*, only five hybrids were obtained indicating very low crossability (0.38%). Subsequently, the F_1 interspecific hybrid was backcrossed with the recurrent parent *O. sativa* cv Savitri for the development of BC₁F₁ hybrid employing embryo rescue technique. The crossability percentage was enhanced to 1.29% in BC₁F₁ Out of 1549 spikelets of F₁ hybrids

Cross combination	No. of spikelets pollinated	No. of embryos cultured	Percentage of germination	No. of embryos rescued	No. of hybrids obtained	Percentage of crossability	No. of hybrids survived up to maturity
O. sativa cv Savitri/ O. brachyantha (F_1)	1302	66	48.5	13	5	0.38	5
O. sativa cv Savitri / O. brachyantha // Savitri (BC ₁ F ₁)	1549	91	43.96	30	20	1.29	1

Table 2. Morphological traits of F_1 and BC_1F_1 hybrids of cross *O. sativa* cv. Savitri / *O. brachyantha* and both the parents

Characters	F ₁ hybrid	BC ₁ F ₁	Donor parent	Recipient parent
Plant height (cm)	98.6±3.61	90.9 ±1.75	105.8 ±0.76	97.2±1.50
Ear bearing tillers	35.8±2.04	16.3±4.8	80.6±1.87	8.8±0.31
Leaf length(cm)	30.7±1.14	38.3±2.02	22.6±1.16	26.8±0.97
Leaf breadth (cm)	$0.9{\pm}0.03$	1.0±0.24	0.8 ± 0.03	$1.7{\pm}0.04$
Panicle length(cm)	17.4±0.24	24.2±0.81	17.1±0.72	23.3±0.88
No. of spikelets per panicle	51.0±4.17	24.2±0.8	53.2±1.61	98.7±3.47
Spikelet length(cm)	$0.74{\pm}0.01$	$0.8{\pm}0.08$	$0.8{\pm}0.0$	$0.6{\pm}0.0$
Spikelet breadth (cm)	$0.2{\pm}0.0$	$0.2{\pm}0.0$	$0.2{\pm}0.0$	0.3±0.0
Awn length (cm)	9.3±0.20	6.2±0.33	16.8±0.42	$0.0{\pm}0.0$
Anther length(cm)	0.3±0.0	0.3±0.0	$0.2{\pm}0.0$	$0.2{\pm}0.0$
Stigma length(cm)	0.1±0.0	$0.2{\pm}0.0$	$0.2{\pm}0.0$	$0.2{\pm}0.0$
Pollen fertility (%)	0.0	2.8	91.4	98.2

□ 196 □

Oryza Vol. 48 No. 3, 2011 (195-199)

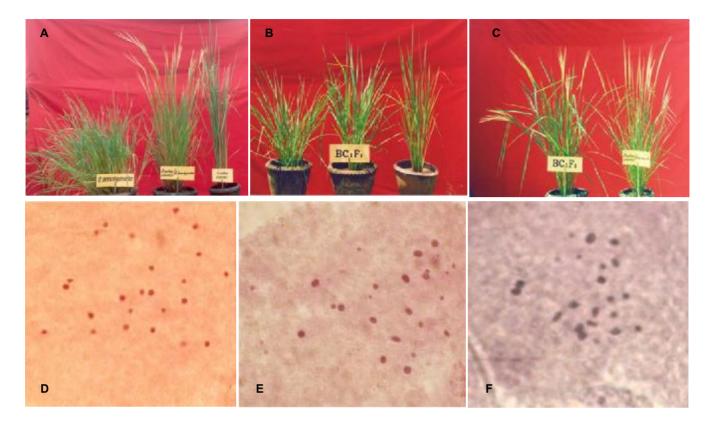


Fig 1. Morpho-cytological photographs of F1 and BC1F1 hybrids of O. sativa cv Savitri / O. brachyantha

- A. Morphology of F₁ hybrids of O. sativa (Savitri)/O. brachyantha with their parents O. sativa cv. Savitri and O. brachyantha,
 B. Morphology of BC₁F₁ hybrid of Savitri/O.brachyantha//Savitri (centre), F₁ hybrid (left) and cv. Savitri (right) at vegetative stage,
- C. Morphology of BC, F, hybrid of Savitri/O. brachyantha//Savitri with F, hybrid of Savitri/O. brachyanhta at flowering stage,
- D. PMC of F, hybrid of O. sativa cv Savitri /O. brachyantha at metaphage 1 showing 24 Is,
- E. Chromosome association of BC₁F₁ of Savitri /O. brachyantha//Savitri showing 1 III, 12 IIs and 9 Is at metaphage I of Meiosis
- F. Chromosome association of BC₁F₁ of Savitri/O. brachyantha // Savitri showing 2 IIIs + 11 IIs + 8 Is at metaphage I of meiosis

pollinated with recurrent parent Savitri, 20 hybrids were obtained from which only one BC_1F_1 hybrid could survive till maturity (Table 1). Similar observations were reported by Jena and Khush (1990), Brar *et al.* (1991) and Multani *et al.* (1994) using other interspecific hybrids.

In case of F_1 hybrids of *O. sativa* cv Savitri / *O. brachyantha* most of the characters were intermediate between the parents. The mean plant height of F_1 interspecific hybrid was about 99cm and reduced in BC₁F₁ (Savitri / *O. brachyantha* // Savitri) to 90 cm (Table 2 and Fig. 1A, B and C). Likewise, the number of ear bearing tillers was reduced from 35.8 in F_1 to 16.3 in BC_1F_1 . Awn length showed similar trend. However, leaf length increased incase of BC_1F_1 (38.3 cm) as compared to F_1 hybrids (30.7 cm). Similar trend was observed with panicle length. Pollen fertility increased to 2.8 % in BC_1F_1 . The characters like spikelet length and breadth and anther length in BC_1F_1 were found to be intermediate between F_1 hybrids and parents. The plant type was observed to be more towards the *sativa* parent. Similar results were obtained by Brar (1996).

The genomic constitution of F_1 interspecific hybrid is AF. At metaphage-I, 70, 65, 74, 80, 60 PMCs of hybrid 1 to 5, respectively were analyzed. The

No. of PMCs studied	. T			Number (of PMCs	with different	Number of PMCs with different chromosome configuration	ıfiguration			Frequency of Frequency PMCs with PMCs with a range of with a rang 11-15 IIs of 1-2 IIIs per cell(%) per cell (%)	Frequency PMCs with with a range of 1-2 IIIs per cell (%)
	12IIs+12Is	13IIs+10Is	1111S+141S	1411s+81s	15IIs+6Is	1111s+1011s+131	1211s+121s 1311s+101s 1111s+141s 141Is+81s 1511s+61s 1111s+1011s+131s 1111+1111s+101s 1111+1211s+91s 2111s+81s 2111s+1211s+61s	1111+1211s+91s	2111s+1111s+81s	2IIIs+12IIs+6Is		
BC_1F_1 127	48 (37.79)	23 (18.11)	48 23 13 10 (37.79) (18.11) (10.24) (7.87)		5 9 (3.94) (7.09)	9 (7.09)	5 (3.94)	6 (4.72)	4 (3.15)	4 (3.19)	59.84	22.05

The cytological characterization of BC_1F_1
(Savitri / O. brachyntha // Savitri) and the pairing
behavior of the chromosomes revealed as many as 12
IIs $+$ 12 Is in most of the PMCs with a mean frequency

hromosomes revealed as many as 12 st of the PMCs with a mean frequency of 37.79 % and 1-2 trivalents (III s) were observed with a mean frequency of 22.05 % per PMCs (Table 3). All the sativa chromosomes paired with one another and a single chromosome of O. brachyantha attached to that pair, thereby giving a trivalent shape. Thus, BC1F1 hybrids showed an improvement in the pairing of chromosomes than F₁ hybrids. Similar observations were reported by Jena and Khush (1990) in O. officinalis, Brar et al. (1991) in O. brachyantha.

frequency of univalents was 100 % (Fig. 1D). Brar et al (1996) reported 0.06 bivalents per PMC and Abbasi (1999) reported 0.05 bivalents per PMC between

genome of these two species.

For the screening of F_1 and BC_1F_1 interspecific hybrids against YSB, the dead heart and white ear head infestation were studied in both wet and dry seasons of 2005-06. The data revealed that in both the seasons, the F_1 interspecific hybrids were observed to be resistant (R) to YSB with the score 1 and 3 for dead heart and white ear head respectively in 0-9 scale. For BC_1F_1 registered a damage score of dead heart and white ear head infestation of YSB (Table 4). This may be due to the addition of the sativa genome when crossed with recurrent parent Savitri and similar observations were recorded by Jena and Khush (1990) for introgression of BPH resistance genes from O. officinalis.

The F_1 and BC_1F_1 interspecific hybrids of O. sativa cv Savitri / O. brachyantha were developed for the introgression of alien genes resistant to YSB available in the species belonging to the secondary gene pool. The study revealed that morphologically the F₁ hybrids were more or less intermediate between the parents with a few variations. In BC_1F_1 , the presence of 0-2 trivalents and 10-15 bivalents at metaphase I was observed, which indicates addition of more sativa genome. The F₁ hybrid was resistant to YSB where as BC_1F_1 was moderately resistant. The BC_1F_1 interspecific hybrids will be further utilized in the backcrossing programme for the development of

Interspecific hybrids

198

Genotypes	Mean I	OH percentage and	d reaction to	o YSB	Mean WEH percentage and reaction to YSB			
	Original Mean	Transferred mean	Score	Reaction to YSB	Original Mean	Transferred Mean	Score	Reaction to YSB
Savitri / O. brachyantha (F ₁)	9.74	18.66	1	R	10.08	19.00	3	MR
Savitri / O. brachyanth Savitri (BC ₁ F ₁)	ha// 12.50	21.04	3	MR	10.50	19.32	3	MR
Ratna (Check)	22.42	34.95	3	MR	20.36	27.20	5	MS
Jaya (Check)	32.46	22.97	7	HS	39.81	39.41	7	S

Table 4. Reaction of the F1 and BC1F1 hybrids against dead heart and white ear head

monosomic alien addition lines (MAALs) which in turn will help to develop rice genotypes resistant to YSB, the deadly pest of rice.

REFERENCES

- Abbsi FM, Brar DS, Carpaena AL, Fukui K and Khush GS 1999. Detection of autosyndicatic and allosyndicatic pairing among A and E genomes of Oryza through genomic insitu hybridization. Rice Genetics Newsletter 16:24-25
- Brar D S, Elloran R and Khush GS 1991. Interspecific hybrids produced through embryo rescue between cultivated and eight wild species of rice. Rice Genetics News Letter 8:91-93
- Brar DS, Dalmacio R, Elloran R, Aggarwal R, Angeles R and Khush GS 1996. Gene transfer and molecular characterization of introgression from wild Oryza species into rice. In : Rice Genetics III. International Rice Research Institute, Manila, Philippines, pp. 477-486.
- Jena KK and Khush GS 1990. Introgression of genes from Oryza officinalis Well ex Watt to cultivated rice. O. sativa L. Theoritical and Applied Genetics 80:737-745.
- Catindig JLA and Heong HL 2003. Rice doctor, Internatinal Rice Research Institute, Philippines pp.1-10

- Multani DS, Jena KK, Brar DS, Delos Reyes BC, Angeles ER and Khush GS 1994. Development of monosomic alien addition lines and introgression of genes from *Oryza australiensis* Domain to cultivated rice *O. sativa* L. Theoretical and Applied Genetics 88: 102-109
- Padhi G and Sen P 2002. Evaluation of wild rice species against YSB (*Scripophaga incertulas*, Walk). J. Appl. Zoo. Res. 11(2 & 3): 103-104.
- Panda B 2006. Wide hybridization for the introgression of yellow stem borer resistance genes from wild rice species to cultivated rice species (*Oryza sativa* L.). (Unpublished thesis).
- Sen P, Panda B, Kar MK, Padhi G 2004. Introgression of alien genes, resistant to yellow stem borer from Oryza brachyantha A. Chev. et. Roehr. to cultivated rice(O. sativa L.). Extended Summaries: International Symposium on Rice : From Gene Revolution to Gene Revolution. Vol.1. pp. 179-180
- Sen P, Panda B, Kar MK, Padhi G and Mohanty SK 2006. Introgression of alien genes for resistance to bacterial blight (BB) and yellow stem borer in rice. In : Abstracts of 26th International Rice Research Conference. 9-13 October, 2006. New Delhi. pp.256-257
- Sitch LA and Romero GO 1990. Attempts to overcome prefertilization incompatibility in interspecific and intergeneric crosses involving Oryza sativa L. Genome 33(3): 321-327